Observations on Microprocessors and Computing Efficiency

C. C. Klimasauskas and J. W. Layland

Communications Systems Research Section

This article presents results of a continuation of our previous study of computing
efficiency in DSN-related tasks. The two task models considered here are manipula-
tion of man-readable character-string data, and a very simple process variable
monitoring operation. Several currently available minicomputers and microproces-
sors are compared. The principal result is that the microprocessors appear con-
siderably more cost-effective than the more powerful machines for the simple
repetitive tasks, but that the opposite is true for more complex operations.

l. An Introduction to the Problem

In the last year, a number of large-scale integrated-
circuit (LSI) microprocessors have become available with
the promise of more to follow in the near future. At pres-
ent there is little understanding, or experimental data, to
determine which tasks they are best able to perform.
This article considers some of the complexities of the
general problem of selecting a particular processor/imple-
mentation, specifically in the area of processor trade-offs
for different tasks. It is a continuation of an earlier study
done comparing minicomputer implementations for per-
forming DSN-related computer activities (Ref. 1).

Il. Time-Storage Costs

This section considers the cost effectiveness of the imple-
mentation of a macroprocessor called STAGE-2 (Ref. 2).
STAGE-2 manipulates character-string data supplied
from one input/output (I/0) device and emits character-

118

string data to another device. Its requirements in terms
of machine capabilities should be similar to the text ma-
nipulation performed by a DSN subsystem controller in
conversing with its operator.

STAGE-2 is a language-independent macroprocessor
written in a machine-independent language called FLUB.
This machine-independence makes it relatively easy to
develop alternative implementations on one computer, or
many computers, and compare their performance directly.
The operation statistics were gathered through a special
instrumented version of STAGE-2. Three alternative im-
plementations were studied for the Sigma 5: The first was
a straightforward implementation, packing all the infor-
mation contained in a FLUB word into a single 32-bit
Sigma word. The second was an implementation which
minimized execution time. In this implementation, FLUB
data were stored in 64-bit double words. The third was
an interpretive implementation to minimize storage. Our
motivation for this implementation comparison may be

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-22

found in the work of Savage (Ref. 3), who showed that a
bound exists to the minimum time-storage product for
any well-defined process. Storage in all implementations
included the STAGE-2 instructions and 4000 FLUB mem-
ory words. These implementations were compared in two
ways: One comparison ignored processor cost, and con-
sidered only the resources of storage and execution time.
The other included the cost of the processor in the stor-
age requirement. Processor storage equivalent was com-
puted from the following:

Processor storage équivalent kbytes =

Processor cost at initial marketing ($)
$ for 1 kbyte of processor storage at initial marketing

The storage-time diagram for the implementations is
shown in Fig. 1. The dashed lines represent a constant
storage-time product. The single-word implementation
appears cheaper than the double-word implementation
when the processor cost is ignored. When the processor
cost is included, the opposite is true. In both case: the
interpretive implementation is always costlier. This is due
to the high time overhead in decoding the FLUB instruc-
tions as compared to the savings in storage. However,
programs such as high-level language translators may
benefit from interpretive implementation, being tasks in
which the functions performed are complex, storage
large, and the instruction-decoding overhead small.
Processor cost is clearly significant here, and is included
in all following material.

The two faster implementations fall roughly upon a
constant time-storage product line. The interpretive im-
plementation would clearly be a mistake to use. Physical
constraints of the task have presented another bound to
implementation alternative. We observe that other con-
straints, such as a requirement to force-fit a task onto
predetermined hardware can result in extremely inefli-
cient use of the computing resources.

Ill. STAGE-2 Processor Comparisons

STAGE-2 was implemented in fact, or hypothetically,
on a variety of minicomputers and microprocessors.
Processor selection was based on information availability.
From manufacturer’s published data, instruction counts
from the instrumented version of STAGE-2, and knowl-
edge of implementations, the execution time and storage
requirements to perform a specific macroprocessing task

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-22

were computed for each processor. These data are plotted
in Fig. 2. For each processor, the processor storage equiv-
alent was considered part of the storage requirement.

Of historical note, the data on the 8080 were not avail-
able when Fig. 2 was first plotted. Without the 8080, it
appeared that STAGE-2 was just too complex a job to be
implemented on a microprocessor. However, the 8080 is
approximately on the same storage-time line as both the
PDP-11/20 and Sigma 5. The 8080 implementation is well
over 10 times faster than the 8008 (though about 10 times
faster in raw processor speed) and requires considerably
less program storage. This results from the availability of
16-bit data manipulating instructions on the 8080. These
more powerful data manipulating instructions, a faster
processor, and more powerful addressing modes com-
pound storage-time savings.

It is worth noting that each of these processors lies
within the storage-time products of 1200 kbyte-min and
2400 kbyte-min. This implies that as resources for per-
forming this task, they are essentially equivalent in cost.
This may be a phenomenon of implementing a machine-
independent task equally poorly on a variety of machines.
This warrants future consideration since the trend in
computing is away from machine-dependent features and
toward, as much as possible, machine-independent algo-
rithms and implementations. For example, Professor Per
Brinch Hansen at the California Institute of Technology
is working on a transportable multiprogramming operat-
ing system written in concurrent PASCAL, soon to be
completed on the PDP-11 (Ref. 4).

In these comparisons, it is essential to realize that a
salient feature of STAGE-2 is that it does not use index-
ing nor indirect addressing as such. A task which exten-
sively uses indexing would increase the 8080’s and 8008’s
storage-time product over its competitors, possibly elim-
inating them from consideration. Also, any task which
required 32-bit arithmetic operations would move the
XDS 930, PDP-11’s, and 8080 out of the competitive
region. The same is true of floating point tasks.

This exercise indicates that microprocessors may be
competitive with minicomputers for performing simple
tasks which utilize direct addressing and some 16-bit data
manipulation (for example, emulation of the FLUB ma-
chine). At the same time, it is clear that we can find some
task which is complex enough to make any specific micro-
processor (or minicomputer) uneconomical with respect
to a more complex processor.

119

IV. System Variable Monitoring, Processor
Comparison

Within a DSN tracking station, computers are used to
monitor an ever increasing number of variables. This
enables operators and engineers to identify real and po-
tential failures immediately, to isolate them, and to iden-
tify potential bottlenecks in performance. As tracking and
flight control complexities increase, variable monitoring
is expected to increase in sophistication and scope to meet
the new demands. One approach to this problem is to
employ a station “master” monitoring computer (MMC)
which interfaces to a number of variable monitoring
systems (VMSs). Each VMS would be responsible for
reporting to the MMC those variables which exceed pre-
determined limits. This might be done by treating each
VMS as a peripheral device of the MMC connected to a
channel multiplexer. Through the channel multiplexer,
the VMS would periodically test each variable. Figure 3
illustrates the task graphically.

The VMS was hypothetically implemented on a variety
of microprocessors and minicomputers. Though better
implementations may exist for each processor, an attempt
was made for each implementation to maximally utilize
speed and processing power. Execution time and storage
requirements were computed from manufacturer’s speci-
fications. Storage for each processor implementation in-
cludes the processor equivalent storage. For purposes of
comparison and from practical considerations, a sample
interval of 20 ms was assumed. Figure 4 illustrates cost
as a function of channel capacity. Whenever the sample
interval could not be achieved with a single processor,
multiple-processors were employed.

In this job, the 8080 microprocessor and even the 8008/
8008-1 are far more cost-effective than any of the mini-
computers. At large channel capacities, however, the
Modcomp II is competitive with the 8008. The 8080 has
about 10 times the capacity of the 8008, because it is a
faster processor with more powerful addressing modes
and data manipulating instructions. In this task, the high
initial cost of the minicomputers is not offset by their
faster processors and more powerful instruction reper-
toires. This small, repetitive task with a data width of
16 bits seems to be an ideal job for microprocessor
implementations.

120

Of possible technological interest is that in the asym,
totic limit system cost appears to be a function of date
of introduction. Notice that the Sigma 5 and PDP-11/20,
the Modcomp II and 8008, the 8008-1, and the 8080 are
from increasingly more recent technological eras, and are
correspondingly less expensive. This is emphasized by
the task which is minimal, fits each processor comfort-
ably, and is tailored to maximally utilize processor power.

The VMS is a task which well fits the capabilities of
the microprocessor. The straightforward addressing re-
quired, short data word, and low initial cost make it much
more attractive than its faster more sophisticated prede-
cessors, the minicomputers.

V. Remarks on Storage Equivalent

Throughout this article, storage has been used as a unit
of processor cost. Principally we hoped to minimize the
effect of manufacturing processes and technology by
assuming that both storage cost and processor cost were
directly proportional to technological and manufacturing
developments. If this, in fact, were true, the resulting
measure of processor storage equivalent should make the
comparisons significantly less dependent on the state-of-
the-art and more dependent on processor architecture
and power. Also, prices for processors and storage are
continually changing, and vary enormously between
sources. As such, storage equivalent provides a uniform
well-defined standard on which to base processor cost.

The principles used in this study can easily be adapted
to a direct cost comparison, in which both storage and
processor costs are expressed in dollars.

VI. Summary

Though the results of this study are limited in scope
and not firmly conclusive, we would like to make three
observations. First, processor cost must be included in
evaluating processor-implementation performance. Sec-
ondly, microprocessors appear competitive in jobs with
short data items and simple addressing requirements.
Finally, microprocessors appear best-suited for simple
repetitive tasks, such as DSN variable monitoring.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-22

References

1. Layland, . W., and Klimasauskas, C. C., “A Myopic View of Computer-Based
System Design,” in The Deep Space Network Progress Report, Technical Report
32-1526, Vol. XIII, pp. 154-167, Jet Propulsion Laboratory, Pasadena, Calif.,
Feb. 15, 1978.

o

. Waite, W. M., Implementing Software for Non-Numeric Applications, Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1973.

3. Savage, J. E., “Computational Work and Time on Finite Machines,” J. ACM,
© Vol. 19, No. 4, pp. 660-674, Oct. 1972.

4. Hansen, P. B.,, DEAMY, A Structured Operating System, CIT-IS Technical
Report 11, California Institute of Technology, Pasadena, Calif., Mar. 1974.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-22 121

1000

O IGNORING PROCESSOR COST
A INCLUDING PROCESSOR COST

INTERPRETIVE INTERPRETIVE
IMPLEMENTATION IMPLEMENTATION~\

8
o
Dd

TIME, min
T

S~
\\

~

—
= SINGLE-WORD
SINGLE-WORD T~
~ IMPLEMENTATION ~JIMPLEMENTATION
S
— ~ \\
\ —

DOUBLE-WORD DOUBLE-WORD
IMPLEMENTATION ;\\ IMPLE{\AENT;‘\TIOE\I

10
20 3 50 60 70 80 90100110
STORAGE, kbytes

Fig. 1. Storage-time diagram for STAGE-2
implementation on Sigma 5

1000 ~~] iNTEL 8008

P\ ~\
Lo
~

(=1
o

~— SIGMA (SINGLE-
WORD)

TIME, min

A ~
—~ ~ INTEL 8080 ~
~ ™~ XDS 930
~— — ‘A\‘
oY ~
T~ rop 11/20 ~ J
~~ _APDP11/45 k

MODCOMP 1™~ |
[| [~

20 30 40 50 60 70 80 90100110
STORAGE, kbytes

Fig. 2. Storage-time diagram for STAGE-2 on
several different processors

122 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-22

INPUT COMPARISON TABLE® /
FROM COMMUNICATION LINK /

INITIALIZE LOOP COUNTERS — ——— e e e e o e — -

YES |
NO CHANNEL 1
DONE? l

I

OUTPUT CHANNEL NUMBER / (16 bits)
TO CONTROLLER
CHANNEL 3
I CHANNEL

MULTI-

. PLEXOR
INPUT VARIABLE FROM (16 bits)
CONTROLLER

COMMUNICATIONS
LINK
CHANNEL 2

MASTER MONITORING
COMPUTER

COMMUNICATIONS
LINK

ACCUMULATOR =

VARIABLE -
LOWER LIMIT

ICHANNEL N

|
I
|
I
I
L _—

<0\ OUTPUT CHANNEL NUMBER OVER
ACCUMULATOR COMMUNICATIONS LINK

20

ACCUMULATOR = OUTPUT ACCUMULATOR OVER
ACCUMULATOR - \ COMMUNICATIONS LINK /
DIFFERENCED .

>0
ACCUMULATOR

DECREMENT LOOP
COUNTER

OTABLE IS IN STORAGE-IMAGE FORMAT SPECIFIC TO TARGET PROCESSOR
bDIFFERENCE IS THE QUANTITY (UPPER LIMIT - LOWER LIMIT), WHERE UPPER AND
LOWER LIMIT ARE, RESPECTIVELY, THE MAXIMUM AND MINIMUM ACCEPTABLE
VALUES FOR VARIABLE

Fig. 3. Flowchart of the variable monitoring system

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-22 123

1000

100
2 SIGMA 5 L
3 MODCOMP I
X
3 11720
2
o 8008
e
wy
10 f Ja
8080
8008-1
1
10 100 1000 10,000

NUMBER OF CHANNELS

Fig. 4. Variable monitoring system cost as a function of
channel capacity and processor

124 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-22

